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Continuum electrostatics is combined with rigorous free-energy calculations in an effort to deliver a reliable
and efficient method for in silico lead optimization. The methodology is tested by calculation of the relative
binding free energies of a set of inhibitors of neuraminidase, cyclooxygenase2, and cyclin-dependent kinase
2. The calculated free energies are compared to the results obtained with explicit solvent simulations and
empirical scoring functions. For cyclooxygenase2, deficiencies in the continuum electrostatics theory are
identified and corrected with a modified simulation protocol. For neuraminidase, it is shown that a continuum
representation of the solvent leads to markedly different protein-ligand interactions compared to the explicit
solvent simulations, and a reconciliation of the two protocols is problematic. Cyclin-dependent kinase 2
proves more challenging, and none of the methods employed in this study yield high quality predictions.
Despite the differences observed, for these systems, the use of an implicit solvent framework to predict the
ranking of congeneric inhibitors to a protein is shown to be faster, as accurate or more accurate than the
explicit solvent protocol, and superior to empirical scoring schemes.

Introduction

Virtual screening of large databases of compounds against a
target protein has become an essential component of drug
discovery.1,2 Docking algorithms can suggest binding modes
for thousands of compounds per day.3 Once a docked pose is
obtained, the affinity of the ligand for this target is estimated
by some form of equation that attempts to relate the nature of
predicted protein-ligand interactions in the complex to the
experimental binding affinity of the ligand.4 In principle, the
highest scoring compounds are flagged for bench synthesis, and
biological assay confirms their high potency, saving months of
work and large quantities of money. In reality, while state of
the art protein-ligand docking programs predict correctly the
binding mode of a compound 70-80% of the time, few
modelers are lucky enough to observe a modest correlation
between predicted and experimental binding affinities. Often
compounds that do not bind at all are discriminated from those
that do bind, but binding affinities are not predicted with an
accuracy that would allow in silico lead optimization. Yet, a
theoretical method that is able toreliably propose appropriate
substituent replacements would be extremely useful.

The theory of ligand binding can be understood by the laws
of statistical mechanics and is a complex process that requires
proper attention to solvation and entropic effects, precisely the
factors that are often lacking in empirical scoring functions. In
principle, these statistical mechanics equations allow us to
calculate exactly the binding free energy of a ligand, and
examples of such applications have been reported for two
decades.5-13 However, for all but the simplest systems, assump-
tions are made so that the calculations are feasible on a practical
time scale. First, the force field that describes the molecular
interactions may not adequately reflect reality, making the
predictions inaccurate. Second, the sampling performed by the

molecular dynamics (MD) or Monte Carlo (MC) algorithms may
not be sufficient to observe a representative sample of protein-
ligand interactions that the system can adopt. In this case, the
calculated free energies will be imprecise. The latter point is
particularly important: converged predictions have often proven
difficult to obtain.14-16 These considerations mean that in
practice a free energy calculation study can fail to give accurate
and reliable answers.

Because of the difficulties associated with the practical
application of rigorous free-energy calculations, faster, more
generally applicable methods have been developed. The
MM/PBSA methodology predicts the absolute binding free
energy∆Gbind of a ligand by combining molecular mechanics
energy, solvation free energies with Poisson Boltzmann or
generalized Born calculations, and entropy estimates from
normal mode calculations.17 MM/PBSA simulations of several
protein-ligand systems have been reported in the literature. The
resultswereoftenencouraging18-22butsometimesunsatisfactory,23-25

and the method has drawn some criticism due to its lack of
clear theoretical foundation.24,25 In another popular approach,
the linear interaction energy (LIE) method, the absolute binding
free energy of a ligand to a protein is obtained by running two
independent simulations; one is the ligand free in solution and
the other is the solvated protein-ligand complex.26 An important
drawback of the LIE method is that energy descriptors have to
be extracted from the simulations and correlated empirically to
the activity of a training set of compounds. This limits the
application of LIE to systems for which sufficient experimental
data is available.27 Continuum solvent models have been
introduced in the LIE methodology to increase efficiency and
test their accuracy.28-30

The great appeal of implicit solvent techniques is the
simplification that arises when thousands of solvent molecules
surrounding the protein-ligand complex are abstracted into a
continuum. This simplification translates into a faster potential
energy evaluation and rapid convergence of thermodynamic
properties. Despite the potential benefits, very few studies have
considered the combination of implicit solvent theories with
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rigorous free-energy simulations, and none have attempted to
calculate complete binding free energies for protein-ligand
complexes.31-34 Such a method would have the benefit of
relying on a sound statistical thermodynamics basis and may
prove advantageous over more complex explicit solvent simula-
tions where convergence of the free energies takes longer
because of the need to simulate the degrees of freedom of
thousands of solvent molecules.

We report here in detail Monte Carlo (MC) free-energy
simulations of protein-ligand complexes in an implicit solvent
model. In addition, the calculated binding free energies are
compared to those obtained by explicit solvent simulations and
empirical scoring schemes. The systems selected are 10 inhibi-
tors of cyclooxygenase2 (COX2),35 10 inhibitors of neuramini-
dase,36 and 18 inhibitors of cyclin-dependent kinase2 (CDK2).37

Potent inhibitors of these three proteins could provide treatment
against pain, influenza, or cancer, respectively, and unsurpris-
ingly, numerous drug design programs target them. From a
methodological perspective, each system offers different chal-
lenges. The binding site of COX2 is buried and hydrophobic,
which makes it an interesting test case to assess the ability of
an implicit solvent methodology to treat ligand desolvation. In
neuraminidase, the binding site is very polar, solvent exposed,
and, depending on the ligand substituent, one or two crystal-
lographic waters bridge interactions between the ligands and
the protein. It is expected that such a binding site will cause
difficulties for an implicit solvent methodology. The CDK2
system should prove particularly challenging because the
structure-activity relationships are complex, and several com-
pounds have a similar binding affinity. Predictions of high
accuracy and precision are therefore necessary to rank properly
the inhibitors of this series.

Methods

Free Energy Calculations.Relative binding free energies can
be calculated by constructing a thermodynamic cycle. The principles
behind this methodology have been reviewed elsewhere.38 The free
energy change for the mutation of ligand A into B in one medium
is obtained by application of the thermodynamic integration
method39

whereλ is a coupling parameter that allows the smooth transforma-
tion of the potential energy functionU(λ ) 0) appropriate for ligand
A, into a potential energy function appropriate for ligand B,U(λ
) 1). The brackets denote an ensemble average corresponding to
the derivative of the potential energy functionU(λ) with respect to
λ (free energy gradients). In practice this quantity is calculated by
averaging the value of the free energy gradients calculated over
several snapshots of the protein ligand complex generated from a
MC or MD simulation. The free energy gradients can be calculated
directly if the functional form of the derivatives of the potential
energy function with respect to the coupling parameterλ have been
implemented in the simulation program. They can also be calculated
by a finite difference scheme, for example, (∂G(λ)/∂λ) ) [∆G(λ +
∆λ) - ∆G(λ - ∆λ)]/[2∆λ], provided ∆λ is small enough. This
approach was adopted here where the Zwanzig equation40 was used
to calculate the free energies∆G(λ + ∆λ) and∆G(λ - ∆λ). These
free energy gradients are calculated at several values of the
parameterλ, and the integral is then estimated by trapezoidal
numerical integration.

The relative binding free energy,∆∆Gbind,AfB, is the difference
between the free energy change in the protein environment,
∆Gprotein,AfB, and the free energy change in the aqueous environ-
ment,∆Gaqueous,AfB. The relative hydration free energy,∆∆Ghydr,AfB,

is the difference between the free energy change in the aqueous
environment,∆Gaqueous,AfB, and the free energy change in vacuum,
∆Gvacuum,AfB.

In this study, the replica exchange thermodynamic integration
(RETI) method41,42 was used to construct the free energy profiles,
and the necessary ensemble of states were formed using Metropolis
Monte Carlo sampling.43 In the RETI protocol, standard thermo-
dynamic integration is performed at each value of the coupling
parameterλ. In addition, moves that exchange system coordinates
between replicai at λ ) A of energyEA(i) and replicaj at λ ) B
of energyEB(j) are occasionally attempted, subject to the following
acceptance test.

The occasional exchange of coordinates between the different
simulations enhances configurational sampling and, hence, con-
vergence of the calculated properties, while the acceptance test
ensures that each replica converges the simulation to the correct
distribution of states.41,42

Implicit Solvent Model. In an implicit solvent simulation, a
solvation free energy term,∆Gsolv, is added to the potential energy
function U describing the protein-ligand complex in vacuum. In
this study, the generalized Born surface area theory44,45 (GBSA)
was adopted because of its efficiency. While not the most rigorous
method, the GBSA treatment of electrostatics includes the screening
of charge-charge interactions by the solvent and an atomic
solvation energy term. With this theory, the solvation free energy,
∆Gsolv, is given by eq 3

whereδi is an atom-type dependent empirical term,SASAi is the
solvent-accessible surface area of that atom,εvac andεsolv are the
dielectric constants of the vacuum and the solvent, respectively,qi

is the atomic partial charge of atomi, rij is the distance between a
pair of atomsij , andBi is the effective Born radius of atomi. The
effective Born radius can be thought of as the spherically averaged
distance of a solute atom to the solvent. Several algorithms exist
to calculate this quantity, and we use the pairwise descreening
approximation (PDA) proposed by Hawkins et al.46 The parameters
for the GBSA model were taken from a previous study.47 Molecular
dynamics simulation of biomolecules in a GBSA solvent are very
efficient and often only 4-5 times slower than vacuum simula-
tions.48 Owing to the nonlocal nature of the GB energy, such
efficiency is lost when the GB algorithms are combined with a
Monte Carlo sampling approach. This is particularly notable as the
system size increases. We have, however, developed a fast GBSA
scheme that can be used in MC simulations of large proteins with
little or no loss of accuracy and results in simulations only 4-5
times slower than vacuum condition.49 The method relies on the
introduction of a cutoff in the GB energy calculation based on the
change of Born radius of one atom after a Monte Carlo move.
Further efficiency is obtained by adopting a simplified sampling
potential approach, where the sampling is conducted with a cheap
GBSA potentialEú that uses reduced cutoffs and the resulting
configurations are then accepted periodically into an ensemble
corresponding to the rigorous GBSA potentialEπ.50,51This method
makes use of a special acceptance test for the Monte Carlo moves

where Eπ and Eú denote a rigorous and approximate GBSA
potential, respectively, andi,j are the coordinates of two trial
configurations.

The role of the acceptance test is to remove any bias in the
distribution of states that would be introduced by the cheap potential

∆Gmedium,AfB ) ∫0

1∂G(λ)
∂λ

dλ ) ∫0

1〈∂U(λ)
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λ
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Eú and ensures the converged properties are those that would be
obtained with the correct GBSA potentialEπ. Thus, only states that
pass this acceptance test contribute to the ensemble averages. It is
interesting to note the similarities between eqs 4 and 2.

Ranking of the Compounds.The method of the predictive index
(PI), defined by eqs 5-7 has been proposed by Pearlman and
Charifson11 to measure the ability of a predictive method to rank a
series of inhibitors according to their order of binding affinity

with

and

whereE(i) andP(i) are the experimental and predicted binding free
energies of compoundi. This index ranges from-1 to +1,
depending on how well the predicted ranking matches the experi-
mental ordering. A value of+1 indicates perfect predictions, a value
of -1 indicates predictions are always wrong, and a value of 0
arises from predictions that are completely random. The predictive
index method essentially considers each pair of compoundsi and
j in turn. Large differences in binding free energies will have a
large weightwij and successfully predicting which of the two
compounds is the more potent will provide a large positive
contribution to the final PI. Ifi and j have a small difference in
binding free energy, an incorrect prediction of the most potent
binder will have a minor impact on the predictive index.

System Preparation.The PDB structure of murine COX2, a
structure of N9 neuraminidase, and a structure of human CDK2
extracted from a CDK2/cyclin A complex were selected as starting
points for this study (PDB code 1CX2,52 1BJI,53 and 2C5P54). For
the model of COX2, hydrogen atoms had already been assigned
by the crystallographers52 and were added to the other protein
models with the program reduce.55 Previous theoretical studies and
crystallographic evidence have pointed out that the conformation
of the sulfonamide moiety in SC-558 in this crystal structure of
COX2 is incorrect.10 As done in a previous study,10 the N-S-
C-C torsion around this functional group was rotated to position
it to interact favorably with neighboring residues, and a nearby heme
was also removed as it is not involved in any direct interactions
with the binding site. The protonation state of histidines was decided
by visual inspection. The proteins were setup with the AMBER99
force field,56 inhibitors were setup with the GAFF57 force field,
and the atomic partial charges were derived using the AM1/BCC
method,58 as implemented in the package AMBER8.48 To avoid
steric clashes, each protein complexed to a representative ligand
(compounds2 for COX2,20 for neuraminidase, and32 for CDK2)
was energy minimized using the Sander module of AMBER8 and
a generalized Born force field (the igb keyword was set to 1).48

The backbone of the energy minimized protein was kept rigid for
subsequent Monte Carlo simulations, which were conducted with
a modified version of the ProtoMS2.1 package.59 To reduce the
computational cost, only the protein residues that have one heavy
atom within 15 Å of any heavy atom of a representative ligand
were retained. The resulting protein scoops consisted of 155 residues
for COX2, 145 residues for neuraminidase, and 115 residues for

CDK2. The ligands were modeled in their binding site on the basis
of the binding mode of the energy minimized representative ligands.
For the explicit solvent simulations, crystallographic waters were
retained, and the complex was hydrated by a sphere of TIP4P water
molecules60 of 22 Å radius and centered on the geometric center
of the ligand. To prevent evaporation, a half-harmonic potential
with a 1.5 kcal‚mol-1 force constant was applied to water molecules
whose oxygen atom distance to the ligand center of geometry was
greater than 22 Å. A similar sphere of water was employed to
solvate the ligands in the unbound state. For the implicit solvent
simulations, all the crystallographic waters, including those bridging
interactions between the ligands and the protein in neuraminidase,
were removed.

The reported IC50 value for the same ligand can vary by several
orders of magnitude, depending on the assay conditions (see for
instance refs 61 and 62). Thus, it is difficult to relate the IC50 values
of inhibitors reported in different studies, and it may be better to
avoid converting those to an absolute binding free energy scale.
To avoid these issues, data from a single assay was used, and the
experimental IC50 values were converted to binding free energies
relative to a reference compound in each series.63 Sets of perturba-
tions were then selected so as to obtain calculated binding free
energies with respect to one reference compound in each series.
The statistical errors were determined by the batch average method
for each value ofλ and were then propagated across the entire
λ-coordinate to yield the maximum error. This error analysis is
known to overestimate the statistical error.41 Additional simulations
were also run so as to close a number of thermodynamic cycles.
The thermodynamic cycles closed to within 1 kcal‚mol-1 or less
in most cases, with deviations up to 2 kcal‚mol-1 for some cycles
involving the neuraminidase inhibitors.

Monte Carlo Simulation Protocol. The bond angles and torsions
for the side chains of residues within 10 Å of any heavy atom of
the ligand and all the bond angles and torsions of the ligand were
sampled during the simulation, with the exception of rings. The
bond lengths of the protein and ligand were constrained. The total
charge of the system was brought to zero by neutralizing lysine
residues lying in the outer (frozen) part of the scoop (511 and 532
for COX2, 273 and 432 for neuraminidase, and 6, 34, and 56 for
CDK2). A 10 Å residue based cutoff was employed in all
simulations. In the generalized Born simulations, a cutoff of 20 Å
for the calculation of the Born radii was applied. To make the
implicit solvent simulations more efficient, the generalized Born
scheme described previously was adopted.49

For the explicit solvent simulations in the bound state, solvent
moves were attempted with a probability of 85.7%, protein side-
chain move with a probability of 12.8% and solute move with a
probability of 1.4%. In the unbound state, solvent moves were
attempted 98.4% of the time. Replica exchange moves were
attempted every 200 thousand (K) moves. The solvent was
equilibrated for 20 million (M) configurations to remove any
repulsive contact with the solute(s). The system was then equili-
brated in one end state (typically corresponding to that of the largest
ligand) for 20M further moves where solute, protein, and solvent
moves were attempted. The resulting configuration was distributed
over 12 values of the coupling parameterλ (0.00, 0.10, ..., 0.90,
0.95, 1.00) and equilibrated for 10M moves before collecting
statistics for 30M moves.

In the implicit solvent simulations, solute moves were attempted
10% of the time, with the remainder being protein side chain moves.
In the unbound state, 2K moves of equilibration were performed
before 200K moves of data collection. Replica exchange moves
were attempted every 6K moves. In the bound state, the system
was pre-equilibrated at one value ofλ for 600K moves. The
resulting configuration was distributed over the 12 values ofλ, and
further equilibration was performed for 100K moves. Data was
collected over the remaining 900K moves.

Vacuum simulations were also conducted to obtain relative
hydration free energies. In this instance, each simulation performed
at a value ofλ was equilibrated for 2K moves and data was collected
for 200K moves.

PI )

∑
j>i

∑
i

wijCij

∑
j>i

∑
i

wij

(5)

wij ) |E(j) - E(i)| (6)

Cij ) -1 if
E(j) - E(i)

P(j) - P(i)
< 0

) +1 if
E(j) - E(i)

P(j) - P(i)
> 0 (7)

) 0 if P(j) - P(i) ) 0
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Empirical Scoring. The modeled binding mode of each ligand
was scored using the Goldscore function and the Chemscore
function64,65in the protein-ligand docking program GOLD.66 Only
the Chemscore function was parametrized specifically to reproduce
binding affinities, although Goldscore has been shown in another
study to yield scores that correlate as well as Chemscore with
experimental binding affinities.67 To avoid artifacts due to the use
of a different force field, the ligand scoring was done using the
“local scoring” protocol described previously,67 which only opti-
mizes terminal groups on the protein and ligand during the searching
part of the docking algorithm and then allows the ligand position
and torsional degrees of freedom to relax during the SIMPLEX
optimization. The terms in the scoring functions that relate to the
internal energy of the ligand were not included in the score, as
these terms have arbitrary reference points.

Results and Discussion

The structures of the inhibitors of the three proteins are shown
in Figure 1. The perturbations selected in this work are shown
in Figure 2. They are typical of those carried out in a binding
free energy study, and the largest perturbation attempted
involves the growth of a phenyl ring (12 to 19, 14 to 20, and
17 to 18). Relative hydration and binding free energies for each
individual perturbation are listed in the Supporting Information.
The simulation results will be discussed for each system
independently before considering the broader lessons gained
from this study.

Cyclooxygenase2.The calculated relative binding free ener-
gies with the explicit solvent protocol for the series of celecoxib
derivative are shown in Figure 3a. The coefficient of determi-
nation r2 has a value of 0.85, which suggests a respectable
correlation between experiment and theory. The mean unsigned
error (MUE) is 0.76 kcal‚mol-1, well within the so-called
“chemical accuracy”. The calculated PI stands at 0.96, denoting
an excellent ability for the free energy simulations to rank the
inhibitors according to their potency. Price and Jorgensen studied
this system with a similar protocol and reported results in

somewhat better agreement with experimental data, with a mean
unsigned error of 0.4 kcal‚mol-1, a coefficient of determination
of 0.96, and a PI of 0.96.10 Their more accurate simulation
results may be due to the different force field that was employed
(OPLS/AA68 with CM1A69 atomic partial charges against
AMBER99/GAFF56,57 and AM1/BCC58 atomic partial charges
for the ligands in this study). In addition, in our simulations,
no water molecules were present in the binding site of COX2,
while depending on the perturbation studied, one or two water
molecules were present in the simulations of Price et al. There
is no structural evidence supporting the presence of water
molecules in this buried, hydrophobic binding site, and Price
et al. could not rule out the possibility that the water molecule
was an artifact of the procedure used to build the water cap in
their simulations. Despite these differences, the overall ordering
of the inhibitors is of similar quality.

The calculated relative binding free energies with the implicit
solvent protocol for the series of celecoxib derivative are shown
in Figure 3b. The MUE at 1.08 kcal‚mol-1 is higher than that
obtained for the explicit solvent simulations, and accordingly,
the coefficient of determination has dropped to 0.70. However,
the calculated predictive index stands at 0.96 and is identical
to that obtained with the other protocols. Thus, while the
predicted binding free energies deviate more from their experi-
mental figure, the ordering of the compounds is as good as with
the previous explicit water protocol.

There is a strong correlation between the hydration free
energies predicted by the implicit and explicit solvent protocol
(r2 ) 0.97). It is well-known that hydration free energies
obtained by a generalized Born approach correlate very well

Figure 1. Structure of the inhibitors of the three proteins considered
in this study.

Figure 2. Series of relative binding and solvation free energy
calculations performed in this study. For COX2, the substituent R is
shown for each compound. For neuraminidase, the circles denote
ammonium-substituted compounds, the squares denote guanadinium-
substituted compounds, and substituents Rtrans,Rcis are listed in order
for each compound. For CDK2, the circle, square, and diamond symbols
denote the nature of the substituent on position R6: methyl, mono-
methylated amino, or amino group, respectively. The three substituents
R3, R4, and R5 are listed in order for each compound.
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with the hydration free energies of small molecules calculated
by explicit solvent simulations.70 Here this relationship still holds
true in the case of more complex, flexible molecules. However,
the correlation between the binding free energies is lower (r2

) 0.92). This suggests that some aspects of solvation in the
protein complex are not captured similarly by the two simulation
methods.

Inspection of Figure 3a,b shows that compounds with polar
substituents (3 and 7) are more stable in the implicit solvent
simulations. This behavior is observed due to the treatment of
desolvation by the algorithms employed to calculate the Born
radii. In the binding pocket, small regions of void exist between
the hydroxy group of7 and the protein side chains. These
regions of space are not occupied by water in the explicit solvent
simulations. In the generalized Born protocol, however, these
small regions are treated as regions of high dielectric (ε ) 78.5).
As a result, the hydroxy group is still partially solvated even in
the binding site. This leads to the relative stabilization of the
polar hydroxy group with respect to the other, less-polar groups.
Artifacts in solvation due to the presence of small pockets of
high dielectric in the interior of proteins have been noted by
other workers.71-73 Here, we investigate a simple method that
attempts to compensate for the improper treatment of desolvation
by the generalized Born approach. By visualizing the binding
site of COX2, we locate three small pockets of void that
surround the 5-aryl group of the ligand, and we position a sphere
of radius 2 Å in each pocket (see Figure 4 for clarity). The
spheres are assigned generalized Born parameters suitable for
a carbon atom. Other force field parameters are set to 0. As a
result, the only impact of these spheres on the simulation is
that they displace a volume of dielectric. Because these spheres
make close contact with the parts of the ligands that are subject

to a perturbation, they affect their Born radii, which in turn
changes the generalized Born energy of the ligands. This
protocol bears some resemblance to the method proposed by
Liu et al.74 to take into account the presence of small voids
between the ligand and the receptor atoms.

Under these conditions, a mean unsigned error of 0.83
kcal‚mol-1 is obtained. The predictive index is 0.96, and the
coefficient of determination is 0.79. The correlation of the
binding free energies between the explicit and the implicit
protocols has also increased to a value practically identical (r2

) 0.96) to the correlation observed between the hydration free
energies. The better results shown in Figure 5 are obtained
because the more polar compounds3 and7 are destabilized by
2.0 and 0.6 kcal‚mol-1, while the binding affinity of the other
compounds is essentially unchanged. A better treatment of
desolvation has therefore increased the quantitative accuracy
of the implicit solvent calculations, even though they remain,
overall, slightly inferior to the explicit solvent calculations. The
modified generalized Born protocol depicted in Figure 4 is very
simple as it only involves filling pockets of void with spheres.
In principle, there are several pockets in the protein that would
need to be filled that could render the protocol cumbersome.
Because it amounts to a better calculation of the Born radii,
similar results could be achieved more generally with a properly
parametrized empirical function that rescales the Born radii
obtained by the PDA algorithm.72

Neuraminidase.The calculated relative binding free energies
with the explicit solvent protocol for the series of DANA
derivatives are shown in Figure 6a. At 3.31 kcal‚mol-1, the

Figure 3. Simulation results for COX2. The substituent R is
shown for each compound. The binding free energies are relative to
compound1.

Figure 4. Model of compound7 in the binding site of COX2, with
the addition of three 2 Å radii spheres that cover approximately the
small regions of the void left between the ligand and the pocket where
the 5-aryl ring extends. The ligand atoms are in licorice representation,
and the protein side chain atoms are in ball and stick representation.
Hydrogen atoms on the amino acid side chains are not shown for clarity.
Figure created with the program VMD.79

Figure 5. Modified implicit solvent protocol results for COX2. The
binding free energies are relative to compound1.

Protein-Ligand Binding Affinity Predictions Journal of Medicinal Chemistry, 2006, Vol. 49, No. 257431



MUE is relatively high. This is essentially because the binding
energies of the two potent binders20and18are overestimated.
If these two compounds are excluded, the MUE drops to 2.16
kcal‚mol-1. The predictions for the whole set follow nonetheless
closely the experimental trends and the coefficient of determi-
nation is 0.81 and the predictive index 0.93. A difficulty arises
in the perturbation of compound13 into compound 16.
Crystallographic evidence suggests that the bulkier guanadinium
group of16 must expel a crystallographic water that is present
when13 is bound.53 This would require the annihilation of the
crystallographic water prior to the perturbation of compound
13 into 16. Such free energy calculations would require a more
elaborate treatment that is beyond the scope of the present
simulations. This system was however studied by Barillari with
an identical force field and a much more refined simulation
protocol, including a 30 Å nonbonded cutoff, protein backbone
motion, and periodic boundary conditions.75 The authors
reported a binding free energy of-3.4( 1.1 kcal‚mol-1, which
includes the effect of water displacement. This value was
adopted for this study.

The calculated relative binding free energies with the implicit
solvent protocol for the same series of perturbations are
presented in Figure 6b. The results match closely the experi-
mental trend and, surprisingly, are in much better quantitative
agreement with experiment than was the case for the explicit
solvent simulations. The MUE at 1.19 kcal‚mol-1 is much lower
than that obtained for the explicit solvent simulations. The
coefficient of determination is 0.82 and is not significantly
different from the explicit solvent results. The calculated
predictive index stands at 0.95 and is nearly identical to that

obtained with the explicit solvent protocol. Qualitatively, the
explicit and implicit solvent protocols perform similarly.
Quantitatively, the implicit solvent protocol performs signifi-
cantly better. Such behavior is unexpected as the high degree
of solvent exposure, and the presence of protein-ligand
interactions, bridged by specific water molecules, was expected
to be challenging for the implicit solvent methodology.

The relative hydration free energies obtained from the
individual perturbations with the two different methodologies
are strongly correlated (r2 ) 0.95), but the correlation is poorer
for the binding free energies (r2 ) 0.61). The two solvent models
reproduce solvation similarly only in bulk water. Such different
behavior is best illustrated by a striking example. In Figure 7,
the free energy gradients for the perturbation of11 to 12 in the
bound state with an implicit and explicit solvent model is
reported. Initially very similar, the free energy gradients increase
less in the implicit solvent simulation toward the end of the
simulation, and this results in a more negative relative binding
free energy. The difference in the free energy gradients is
understood by observing simulation snapshots recorded at the
end of the perturbation and shown in Figure 8. In the generalized
Born simulations, the ethyl substituent on the amide group on
the ligand can sample equally two pockets during the simulation,
while it samples almost exclusively one pocket in the explicit

Figure 6. Simulation results for neuraminidase. The substituent Rpol

is either an ammonium (circle) or a guanadinium group (square) and
the Rtrans and Rcis substituents listed for each compound. The binding
free energies are relative to compound11.

Figure 7. Free energy gradients recorded in the perturbation of11
into 12 bound to neuraminidase. The solid line corresponds to the
perturbation carried out in explicit solvent. The dashed line is the
perturbation in implicit solvent. The error bars represent the standard
error.

Figure 8. Overlay of 10 ligand snapshots evenly sampled from a
trajectory recorded at a value ofλ set to 1.00 for the perturbation of
11 into 12 bound to neuraminidase. In orange are the snapshots from
the implicit solvent simulation; in red are the snapshots from the explicit
solvent simulation. The solvent accessible surface area of the binding
site is represented to indicate the position of the two pockets that can
be occupied by the substituents Rcis and Rtrans. Figure created with the
program VMD.79
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solvent simulation. That pocket is larger and more shallow than
the previous, and the ethyl group there experiences weaker
interactions with the protein than it would in the other pocket.
This observation is supported by experimental binding free
energy evidence.36 Also, it can be seen that the position of the
central ring of the ligand differs between the solvation models.
In the explicit solvent simulations, the ring is slightly tilted
compared to the ring in the implicit solvent simulations, and
the amide group that bears the ethyl substituent is projected
closer to the edge connecting the two pockets by about 0.8 Å.

The preceding observations suggest that the origin of the
differences in the free energy gradients between the implicit
and the explicit solvent approaches can be due to two factors.
First, the solvation model can have such an influence on the
potential energy surface that the two ligands adopt different
configurations in the binding site. As a result, when the extra
methyl group is grown, it experiences a different environment.
The discrepancy between the two simulations would therefore
be caused by force field effects. Second, in the explicit solvent
simulations, conversion of the ligand between the two configu-
rations can be hindered by the presence of several water
molecules around the binding site. With simple Monte Carlo
moves that randomly displace/rotate one water molecule at a
time, it will be difficult for the solvent to let the ethyl group
rotate freely. The differences in the free energy gradients would
then be caused by an incomplete sampling of the thermally
accessible states for the ligand in the binding site. A combination
of these two factors is also possible.

The perturbation of13 into 16 does not pose additional
difficulties in a generalized Born force field, as a crystal-
lographic water does not have to be annihilated. Intuitively, one
would expect the implicit solvent simulation to yield results in
disagreement with the observed change in binding free energy.
This is because crystallographic water molecules bridging
interactions between the ligand and the protein should exhibit
a behavior very different from bulk water. The experimental
change in binding free energy is-2.8 kcal‚mol-1. The general-
ized Born simulation yields a result of-3.03( 1.27 kcal‚mol-1,
which is in very good agreement. With concern that this result
might be fortuitous, the simulation length was doubled for each
window. The final results,-2.86 ( 1.04 kcal‚mol-1 is not
different. It is tempting to argue that in the process of growing
the guanadinium group, a volume of high dielectric space has
been replaced by a low dielectric space. Thus, to some extent,
the desolvation of the pocket is taken into account by the
generalized Born theory. The perturbation of13 into 16 was
then carried out with the explicit solvent protocol in the absence
of the crystallographic water and, hence, does not include
contributions to the binding free energy due to the displacement
of this water. A binding free energy of-5.14( 1.30 kcal‚mol-1

was obtained. This figure is lower than those obtained with the
generalized Born protocol by over 2 kcal‚mol-1, presumably
because the replacement of the ammonium group by the bulkier
guanadinium group is no longer penalized by desolvation of
the pocket with this simulation protocol. It is surprising,
however, that such a simple treatment of water expulsion by
the implicit solvent methodology would lead to a good agree-
ment with experiment, and in the absence of other systems to
test the methodology, one must keep in mind that such
agreement between the observed and the calculated binding free
energy change may be fortuitous.

Cyclin-Dependent Kinase 2.The calculated relative binding
free energies of the CDK2 inhibitors are plotted in Figure 9.
The predictions are clearly in poor agreement with experiment.

For the explicit solvent simulations, the MUE is 4.55 kcal‚mol-1,
the r2 is 0.09, and the PI is 0.15. For the implicit solvent
simulations, the MUE is 3.02 kcal‚mol-1, the r2 is 0.16, and
the PI is 0.36. It is interesting that the implicit solvent protocol
fares better than the explicit solvent protocol. The overall
performance is, however, too low to consider the predictions
successful. The correlation of the hydration free energies
calculated by each protocol is high (r2 ) 0.85), but much lower
for the binding free energies (r2 ) 0.53), a trend already
observed in neuraminidase, where the binding site is also solvent
exposed.

Several factors make this series of CDK2 inhibitors a
challenging test. First, there are twice as many compounds to
rank as in the previous systems. Second, the span of experi-
mental binding affinities is smaller (about 5 kcal‚mol-1), and
half of the compounds in the series have a relative binding
energy within 1 kcal‚mol-1 of compound21. An accurate force
field is therefore needed to obtain high quality ranking. It is
also likely that other factors affect the quality of the results.
The crystallographic structures of an analogue complexed to
CDK2 (PDB code 2C5N) shows that when the phenyl ring is
substituted by bulky groups on position R5, the side chain of
lysine 89 can adopt an alternative conformer to form a salt
bridge with nearby aspartic acid 86. In the PDB structure
adopted in this study, Lys89 extends over the ligand and does
not interact directly with Asp86. In the explicit solvent simula-
tions, when substitutions are made on position R5, the side chain
of Lys89 is pushed back into the solvent, but does not form a
salt bridge with Asp86. In the implicit solvent simulations,
Lys89 is considerably more flexible and it often adopts an

Figure 9. Simulation results for cyclin-dependent kinase 2. The
substituent R6 is a methyl (circle) or monomethylated amino (square)
or amino (diamond) group, and the three substituents R3, R4, and R5

are listed for each compound. The binding free energies are relative to
compound21. Some compounds are off the scale.
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extended conformation that increases its solvation. A salt bridge
between Lys89 and Asp86 is also observed, albeit infrequently.
This observation suggests that a wider range of configurations
of Lys89 are sampled during the implicit solvent simulations,
but with the present force field, solvation of the lysine side chain
is preferred over interactions with Asp86. In addition, crystal-
lographic evidence does not clarify the precise binding mode
of some inhibitors. The phenyl ring that bears substituents
R3-R5 can be flipped by 180 degrees in the binding site, pro-
jecting the substituents into different environments. Additional
calculations were run for selected perturbations with different
orientations of the phenyl ring, but no significant improvement
in ranking was observed.

In addition to the sampling and force field difficulties
observed with this system, several assumptions have been made
to create a model of the protein ligand complex (initial
coordinates of the protein-ligand complex, rigidity of the
protein backbone, and protonation states of histidines). It cannot
be ruled out that these are directly responsible for the poor
quality of the predictions and that a more careful treatment of
this system would provide more accurate answers. The fact
remains that the protocol employed to calculate binding free
energies in this study was successfully applied to cyclooxyge-
nase2 and neuraminidase, but not cyclin-dependent kinase 2.

Influence of Protein Flexibility. A significant difficulty in
the calculation of protein-ligand relative binding free energies
arises from the sampling of the many protein and solvent degrees
of freedom, in addition to the ligand degrees of freedom. An
implicit solvent framework reduces such complexity, but the
degrees of freedom of protein side chains must still be sampled.
Here we consider the impact of such protein side chain flexibility
on the calculated binding free energies. The implicit solvent
simulations were repeated with a completely rigid protein model,
and the results were compared to those obtained with the implicit
solvent simulations of a flexible protein. Because there were
fewer degrees of freedom to average over, the simulations were
run for only 300K moves for each window.

For COX2, the celecoxib analogues with the larger substituent
2 and3 are more stable by about 1 kcal‚mol-1, while the smaller
substituents are destabilized by 0.5-1 kcal‚mol-1 (8, 9, and
10). The mean unsigned error is 1.03 kcal‚mol-1, the predictive
index is 0.93, and the coefficient of determination is 0.67. For
neuraminidase, the same trends are observed. The larger
compounds are seen to bind even more favorably if no protein
flexibility is considered. The MUE is 1.69 kcal‚mol-1 because
the affinity of compounds18 and 20 are now overestimated,
but the coefficient of determination is 0.82 and the predictive
index still stands at a very high value of 0.96.

Before conducting the Monte Carlo simulations, the protein
binding site was energy minimized in the presence of one
compound in each series (2 for COX2 and20 for neuramini-
dase). Compounds2 and20 are the largest molecules in their
series, and it is thus possible that the protein binding site has
been optimized to interact with the larger compounds of the
set. This could explain the observed trends.

Interestingly, simulations of a rigid model of CDK2 yield a
much higher predictive index of 0.66. Inspection of the
predictivity plots shows indeed a better agreement of the
calculated binding affinities with experiment. The mean un-
signed error is 3.45 kcal‚mol-1 and the coefficient of determi-
nation is 0.18, but this is mainly because the binding affinity
of compound40 is largely overestimated (+23 kcal‚mol-1). If
this compound is ignored, the MUE drops to 2.32 kcal‚mol-1

andr2 increases to 0.36. In general, R5-substituted compounds

are now much less favorable than when protein flexibility was
enabled. This is because in the CDK2 model constructed from
structure 2C5P, substituents on position R5 form bad contacts
with the side chain of Lys89. In the previous simulations, Lys89
was able to move away to accommodate the substituents but,
with the present protocol, is unable to do so, and the bad contacts
cannot be alleviated.

To test the influence of the initial protein model on the
predictions, the calculations were repeated with the PDB
structure 2C5N. No correlation or predictive power was
observed (MUE, 2.32 kcal‚mol-1; PI, 0.04;r2, 0.00), and R5-
substituted compounds are now predicted to bind more favor-
ably. This is because in the CDK2 model constructed from PDB
structure 2C5N, Lys89 has adopted a retracted conformation to
interact with Asp86. As a result, substituents can be added to
position R5 without forming bad contacts with Lys89.

It is noteworthy that, for COX2 and neuraminidase, quantita-
tive agreement has worsened in both cases but qualitative
predictions, as judged by the coefficient of determination and
the predictive index, are of similar quality. However, in the case
of CDK2, a rigid protein protocol could not be applied reliably
as the results depend markedly on the initial selection of a
protein structure.

Convergence of the Free Energies.No specific rule dictated
the choice of the number of Monte Carlo moves employed to
calculate the free energy changes reported in the previous
sections. It is interesting to evaluate, a posteriori, the quality of
the predictions as a function of the amount of computational
resources invested. This would also provide a fair comparison
of the implicit and explicit solvent protocols.

In Figure 10, the MUE and the PI are plotted as a function
of the time taken to complete the simulations for each protein.
It assumes enough CPUs are available to run all the perturbations
simultaneously. In addition, while simulations in the unbound
state are very fast in the implicit solvent simulations (about 20
min), they do take longer in the explicit solvent simulations
and their cost has to be considered.

The mean unsigned error converges very quickly for COX2.
For the explicit solvent simulations, stable results require about
12 h of simulation. The MUE of the implicit and modified
implicit simulation protocols does not evolve much after 5-7
h of simulation. For the simulations conducted with a rigid
protein, the MUE is stable after 2-3 h. All methods yield a PI
greater than 0.90 after only 3 h of simulation. The PI for the
explicit solvent simulations is stable after about 5 h of
simulation. This varies between 1 and 4 h for the implicit and
modified implicit solvent simulations. The PI for the simulations
conducted with a rigid protein is essentially stable after 2 h.

In neuraminidase, for the explicit solvent simulations, after
10 h of simulation, the mean unsigned error stabilizes around
2.6 kcal‚mol-1. However, it steadily increases after 20 h. This
suggest that all the calculated individual free energy differences
may not be fully converged. The opposite behavior is observed
with the implicit solvent simulations and the mean unsigned
error peaks at 2.3 kcal‚mol-1 after about 3 h and then steadily
decreases to about 1.0 kcal‚mol-1. If no protein flexibility is
allowed, the mean unsigned error is seen to rapidly oscillate
around 1.6 kcal‚mol-1 after about 3 h. The PI obtained with
the explicit solvent simulations is stable after about 8 h of
simulation. Both implicit solvent protocols yield relatively stable
PIs quickly, in about 2 h.

For CDK2, the MUE of the implicit solvent protocols is stable
after a few hours and approximately 14 h for the explicit solvent
protocol. The plot of the MUE for the rigid protein simulations
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of 2C5P (green curve) is slightly misleading because it includes
compound40, whose binding affinity is largely overestimated
(+23 kcal‚mol-1). This is because the large group NMe2 of 40
clashes with Lys89, and the calculated free energy change never
stabilizes. If40 is removed from the set, a much more stable
curve, similar to the rigid protein simulation of 2C5N (orange
curve) is observed. Finally, the PIs for all the methods are
relatively stable, with the explicit solvent protocol showing the
most variations.

The preceding results suggest that the implicit solvent
simulations provide stable predictions more quickly than the
explicit solvent simulations. It is also clear that predictions of
similar quality could have been obtained at a fraction of the
computational expense associated with the simulation protocols
adopted for this study. Interestingly, analysis of the convergence
of the free energy change for individual perturbations shows
that some require longer simulation time to be well converged.
Thus, the more rapid convergence of the mean unsigned error
and predictive index must reflect a cancellation of errors between
individual perturbations.

Importance of Configurational Averaging. Some workers
have suggested incorporating solvation effects into empirical
scoring functions by calculating the total electrostatic energy
(Coulombic and generalized Born energy) of a single snapshot
of a ligand, protein, and ligand-protein complex.74,76 In most
empirical scoring functions, a single configuration of the ligand
bound in the protein binding site is usually considered. In Figure
11, the average of the total electrostatic energy of compound

11 in the unbound state and bound to neuraminidase is plotted
as a function of the number of Monte Carlo moves.

It is important to remember that the configurations generated
during the simulation are those that are thermally accessible to
the system at a biological temperature. Because the ligand is
relatively stable in the binding site and was manually docked
such that it reproduces the binding mode of an analogue, the
vast majority of the ligand configurations would be equivalent
to acceptable docking results and could have been used to obtain
a score based on that single configuration. From the plots above,
it is seen that the electrostatic energies fluctuate significantly.
Even in the unbound state, which consists of the ligand isolated
in solution, the electrostatic energy can fluctuate by 1-2
kcal‚mol-1 between two different blocks of simulations. As each
block is the average of the electrostatic energy over 1K MC
moves, the fluctuations between different snapshots would be
even larger. All the points along these trajectories would be
suitable candidates for scoring and yet the fluctuations of the
total electrostatic energy are on the scale of a typical binding
free energy. For this system, any binding score obtained from
a single snapshot analysis would arguably be unreliable. A more
reliable estimate can be obtained by calculating the cumulative
average of the electrostatic energy, which requires averaging
over several uncorrelated snapshots to converge to within a
sufficient precision.77

Empirical Scoring Models. Could predictions of similar
quality have been obtained with simple empirical scoring
functions instead of the more expensive free energy protocols?

Figure 10. Convergence of the mean unsigned error and the predictive index as a function of the time taken to complete a single simulation at one
λ value. In black are the explicit solvent simulations; in red are the implicit solvent simulations; in green are the implicit solvent simulations with
a rigid protein; in blue are the modified implicit solvent simulations (COX2 only); and in orange are the implicit solvent simulations in an alternative
rigid model of a protein (CDK2 only). The timings assume that sufficient CPUs are available to run all the perturbations simultaneously (132 CPUs
for COX2, 156 CPUs for neuraminidase, 228 CPUs for cyclin-dependent kinase 2). All the timings were recorded on 2.2 GHz AMD Opteron
processors. For neuraminidase, it was initially unclear if the mean unsigned error had converged at the end of the implicit solvent simulations, and
these were run for twice their original duration, showing no significant deviation from the initial results (red-dashed line).
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Because it is not always clear how to relate an empirical score
to a binding free energy, only predictive indexes were measured
with these methods. With the Chemscore scoring function,64,65

PIs of 0.58 and 0.00 were obtained for COX2 and neuramini-
dase, respectively. With the Goldscore scoring function,66 PIs
of -0.26 and 0.75 were obtained for COX2 and neuraminidase,
respectively. Because it was found for CDK2 that the free energy
simulations with a rigid protein model were markedly sensitive
to the initial protein coordinates, the scoring functions were
applied to the two CDK2 structures used previously. Chemscore
and Goldscore gives PI values of 0.49 and 0.21 for the series
of compounds bound to PDB structure 2C5P. These PIs drop
to 0.00 and-0.28, respectively, when the compounds are scored
against PDB structure 2C5N.

In general, the PIs are much lower than those obtained with
the free energy protocols. In addition, the performance of each
scoring function appears to depend on the nature of the binding
site. Our results agree with a study from Verdonk et al., which
found in virtual screening applications that Chemscore gave
better enrichments than Goldscore for lipophilic binding sites
(COX2), while the opposite was found for polar sites (neuramini-
dase).78 The behavior of both scoring functions on CDK2 is
similar to the one observed for the free energy simulations with
a rigid protein model: reasonable PIs can be obtained if the
compounds are scored against a particular CDK2 structure. This
raises the question of how such protein structure could be singled
out from other CDK2 structures bound to ligands from the same
series.

Conclusions

Protein-ligand binding free energies have been calculated
by computer simulations for three different protein-ligand
systems within the rigorous framework of statistical thermo-
dynamics. The influence of water was represented by explicit
and implicit solvent theories. Both methods give predictions in
excellent qualitative agreement for COX2 and neuraminidase,
but not CDK2. For COX2, the implicit solvent simulations are
in slightly less quantitative agreement with experiment than the
explicit solvent simulations. For neuraminidase and CDK2, the
implicit solvent simulations are more accurate than the explicit
solvent simulations. In addition, converged predictions are
obtained more rapidly with the implicit solvent simulations.
Compared with other binding free energy calculation methods
that make use of implicit solvation,17,28,30,74the present meth-
odology has the advantage of relying on a clear theoretical
framework to incorporate correctly entropic effects into the
computed binding free energies. It is intriguing that the implicit

solvent simulations fare better in two of the three systems
studied. There is no reason to expect that an implicit treatment
of solvation would be in general more accurate than an explicit
treatment of solvation, and the present results may be fortuitous.
It may also be that the other approximations in this study (other
terms in the force field equations, protein model, extent of
sampling) are more important for a good prediction of binding
energies than the differences between implicit and explicit
theories of solvation. On the systems tested, the scoring
functions were found to yield in general lower quality predic-
tions. This emphasizes only that they cannot be used reliably
for lead optimization.

When high quality predictions are obtained for a given
dataset, one should wonder if the system investigated was not,
in fact, too simple. For COX2, it is rather obvious that the
hydroxyl analogues3 and7 should not be potent inhibitors, as
they cannot form a hydrogen bond in the hydrophobic pocket
in which they are located. If the predictions are reanalysed in
the absence of these two compounds, PI values of 0.95, 0.91,
and 0.95 are obtained for the explicit solvent, implicit solvent,
and modified implicit solvent protocols. At 0.15, the PI of
Goldscore for this modified dataset is still extremely low and
for Chemscore the PI drops from 0.58 to-0.07. Thus, in this
system, if the “obvious” compounds are not considered, the
performance of the free energy methods does not degrade, unlike
the empirical scoring functions tested here.

A number of useful methodological conclusions can also be
drawn from this study. For instance, the relative hydration free
energies of the ligands predicted by the generalized Born model
were found to be in very good agreement with those predicted
by the explicit solvent protocol, yet the binding free energies
were in poorer agreement. Thus, future implicit solvent param-
etrizations aimed at ligand binding free energy calculations
cannot rely solely on a good prediction of hydration free
energies. In the case of COX2, the agreement could be improved
by modifying the simulation conditions such that more accurate
Born radii are calculated. However, in the case of neuraminidase,
the absence of explicitly modeled waters leads to markedly
different protein-ligand interactions, and it is unclear if both
methodologies can be reconciled. Another important observation
is that when simulations are carried out with a rigid protein
model the predictions are found to converge quickly, but
averaging over the ligand degrees of freedom is still necessary
to obtain precise results in general. The predictive indices
obtained by this approach were consistently superior to those
obtained by either Chemscore or Goldscore. However, if protein
flexibility is neglected, care must be taken to establish that the

Figure 11. Fluctuations in the total electrostatic energy of the system during the simulation of compound11. The dashed line is the cumulative
average. Each point is the average of 1K MC moves.
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predictions are not markedly affected by the choice of the protein
structure and the conditions of preparation of the protein-ligand
model. This remark also applies to empirical scoring functions
based on a single snapshot analysis of protein-ligand com-
plexes.

Importantly, with modern computing facilities, stable predic-
tive indices, and mean unsigned errors can be obtained in just
a few hours before all the individual perturbations are fully
converged. With the implicit solvent protocol and about 150
CPUs, available to many organizations or through distributed
computing projects, it seems feasible to study two dozen
substituent replacements a day. This appears sufficiently fast
to provide valuable insights to help optimize a promising hit
into a potent lead. Thus, free energy calculations should not be
considered too time-consuming to be of practical use for drug
design studies.

Other limitations make free energy calculations less applicable
than LIE or MM/PBSA. The present study is limited to
congeneric inhibitors due to the difficulty of perturbating one
ligand into another unrelated ligand. This is partly an issue of
convergence of the free energies, which can be solved by
running longer simulations, and complex system setup, which
prevents automation. It is, therefore, important to concentrate
methodological efforts on the development of rigorous free
energy methods that allow fast, reliable calculations of free
energy differences between structurally dissimilar ligands.

Do these results mean free energy calculations should be used
more widely? We believe the answer is yesif crystallographic
evidence or reliable docking predictions are available, the class
of ligands studied do not cause significant conformational
changes of the binding site, and the goal is to optimize
substituent placement on a scaffold. Because of limitations in
sampling algorithms, force fields, and protein models, it is
unrealistic to expect high accuracy predictions to be obtained
all the time, but the data presented here suggest that the
calculations work better than the empirical scoring functions
typically available to a modeler and at a computational cost
that has become affordable.
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